Time series classification by class-specific Mahalanobis distance measures

نویسندگان

  • Zoltán Prekopcsák
  • Daniel Lemire
چکیده

To classify time series by nearest neighbors, we need to specify or learn one or several distance measures. We consider variations of the Mahalanobis distance measures which rely on the inverse covariance matrix of the data. Unfortunately — for time series data — the covariance matrix has often low rank. To alleviate this problem we can either use a pseudoinverse, covariance shrinking or limit the matrix to its diagonal. We review these alternatives and benchmark them against competitive methods such as the related Large Margin Nearest Neighbor Classification (LMNN) and the Dynamic Time Warping (DTW) distance. As we expected, we find that the DTW is superior, but the Mahalanobis distance measures are one to two orders of magnitude faster. To get best results with Mahalanobis distance measures, we recommend learning one distance measure per class using either covariance shrinking or the diagonal approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time Series Classification by Class-Based Mahalanobis Distances

To classify time series by nearest neighbor, we need to specify or learn a distance. We consider several variations of the Mahalanobis distance and the related Large Margin Nearest Neighbor Classification (LMNN). We find that the conventional Mahalanobis distance is counterproductive. However, both LMNN and the class-based diagonal Mahalanobis distance are competitive.

متن کامل

Development of Diagnostic and Prognostic Methodologies for Electronic Systems Based on Mahalanobis Distance

Title of Document: DEVELOPMENT OF DIAGNOSTIC AND PROGNOSTIC METHODOLOGIES FOR ELECTRONIC SYSTEMS BASED ON MAHALANOBIS DISTANCE Sachin Kumar, Doctor of Philosophy (Ph.D.), 2009 Directed By: Chair Professor, Michael Pecht, Department of Mechanical Engineering Diagnostic and prognostic capabilities are one aspect of the many interrelated and complementary functions in the field of Prognostic and H...

متن کامل

metricDTW: local distance metric learning in Dynamic Time Warping

We propose to learn multiple local Mahalanobis distance metrics to perform knearest neighbor (kNN) classification of temporal sequences. Temporal sequences are first aligned by dynamic time warping (DTW); given the alignment path, similarity between two sequences is measured by the DTW distance, which is computed as the accumulated distance between matched temporal point pairs along the alignme...

متن کامل

Parsimonious Mahalanobis kernel for the classification of high dimensional data

The classification of high dimensional data with kernel methods is considered in this article. Exploiting the emptiness property of high dimensional spaces, a kernel based on the Mahalanobis distance is proposed. The computation of the Mahalanobis distance requires the inversion of a covariance matrix. In high dimensional spaces, the estimated covariance matrix is ill-conditioned and its invers...

متن کامل

Robustified distance based fuzzy membership function for support vector machine classification

Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adv. Data Analysis and Classification

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012